World News

Industry news and insights from Europe and around the World

UK News

Latest news and developments in the United Kingdom

Products

Keep up-to-date with the latest new products and technology

Features

General articles, applications and industry analysis

HFE additive boosts heat exchange

USA/CHINA: Researchers from Tsinghua University and Brown University, Providence, RI, claim to have discovered a simple way to boost heat exchange in air conditioning and refrigeration systems. 

In a paper published in Nature Communications, the researchers show that adding a readily available organic solvent to common water-based turbulent heat exchange systems can boost their capacity to move heat by 500%. Researchers say that is far better than previously investigated technologies, including the addition of nanoparticles.

“Other methods for increasing heat flux — nanoparticle additives or other techniques — have achieved at best about 50% improvement,” said Varghese Mathai, a postdoctoral researcher at Brown and co-first author of the study, who worked with Chao Sun, a professor at Tsinghua who conceived of the idea. “What we achieve here is 10 times more improvement than other methods, which is really quite exciting.”

Turbulent heat exchangers use the natural movements of liquid to move heat. They consist of a hot surface, a cold surface and tank of liquid in between. Near the hot surface, the liquid heats up, becomes less dense and forms warm plumes that rise toward the cold side. There, the liquid loses its heat, becomes denser and forms cold plumes that sink back down toward the hot side. The cycling of water serves to regulate the temperatures of each surface. 

In 2015, Sun had the idea to use an organic component known as hydrofluoroether or HFE to speed the cycling of heat inside this kind of exchanger. HFEs are employed as solvents and, also, as specialist heat transfer fluids in organic Rankine cycle, but Sun suspected that it might have more interesting properties as an additive in water-based systems. 

Working with the study’s co-first author Ziqi Wang, Mathai and Sun experimented with adding small amounts of HFE and, after three years of work, were able to maximize its effectiveness in speeding heat exchange. The team showed that concentrations of around 1% HFE created dramatic heat flux enhancements up to 500%. 

The researchers used HFE7000, a non-corrosive, non-flammable and ozone friendly fluid with a GWP of 530. One limitation is that the approach only works on vertical heat exchange systems — ones that move heat from a lower plate to an upper one. It doesn’t currently work on side-to-side systems, though the researchers are considering ways to adapt the technique.

Above: video showing how a patch of “ink” injected into a thermal convection heat exchanger system mixes in time. On the left is a conventional turbulent heat exchanger and on the right is the same heat exchanger with addition of a minute (1%) volume of HFE-7000. The videos have same frame rate and the right one mixes much faster. Notice that after 4 seconds, almost all of the ink has mixed, while turbulence alone is unable to do this.

Using high-speed imaging and laser diagnostic techniques, the researchers were able to show how the HFE enhancement works. When near the hot side of the exchanger, the globules of HFE quickly boil, forming biphasic bubbles of vapour and liquid that rise rapidly toward the cold plate above. At the cold plate, the bubbles lose their heat and descend as liquid. The bubbles affect the overall heat flux in two ways, the researchers showed. The bubbles themselves carry a significant amount of heat away from the hot side, but they also increase the speed of the surrounding water plumes rising and falling.

“This basically stirs up the system and makes the plumes move faster,” Sun said. “Combined with the heat that the bubbles themselves carry, we get a dramatic improvement in heat transfer.”

That stirring action could have other applications as well, the researchers say. It could be useful in systems designed to mix two or more liquids. The extra stir makes for faster and more complete mixing.

“This biphasic approach generates a very large increase in heat flux with minimal modifications to existing heating and cooling systems,” Mathai said. “We think this has great promise to revolutionise heat exchange in HVAC and other large-scale applications.”

Latest News

29th February 2024

BESA backing for WorldSkills UK

UK:The Building Engineering Services Association (BESA) is organising the refrigeration and air conditioning (RAC) category of the WorldSkills UK competition.
29th February 2024

Beijer Ref to acquire Australian firm QAE

SWEDEN/AUSTRALIA: Beijer Ref will expand its position in the Australian market with the agreement to acquire 60% of the shares in Sydney-based Quality Air Equipment (QAE).
29th February 2024

Chemours places CEO on administrative leave

USA: Chemours has placed its president and CEO Mark Newman, CFO Jonathan Lock and principal accounting officer Camela Wisel on administrative leave pending the completion of an internal review.
28th February 2024

Seeley to boost production in US export push

AUSTRALIA: Evaporative cooling equipment manufacturer Seeley International is to upgrade and expand its manufacturing plant in Lonsdale, South Australia, to boost exports to the USA.
28th February 2024

EPEE calls for RACHP recognition

BELGIUM: The European Partnership for Energy and the Environment (EPEE) has called for recognition of the critical role of RACHP technologies in energy efficiency and climate mitigation. 
28th February 2024

PSH compressor a “game-changer” for heat pumps

USA: The new Danfoss PSH scroll compressor with vapour injection allows for a wider range of operating temperatures and could be a potential “game-changer” for heat pump adoption.