World News

Industry news and insights from Europe and around the World

UK News

Latest news and developments in the United Kingdom

Products

Keep up-to-date with the latest new products and technology

Features

General articles, applications and industry analysis

New material advances magnetic trials

A schematic for the implementation of the rotating MCE in magnetic cooling devices with HoMn2O5 as refrigerant. This concept can be used for the liquefaction of the helium and hydrogen using them as heat transfer fluids.
A schematic for the implementation of the rotating MCE in magnetic cooling devices with HoMn2O5 as refrigerant. This concept can be used for the liquefaction of the helium and hydrogen using them as heat transfer fluids.

USA: A team of Canadian-Bulgarian researchers has discovered special characteristics in a rare-earth that could have implications for the development of magnetic refrigeration.

The magnetocaloric effect (MCE) is a well-known phenomenon in which a temperature change is effected by exposing a so-called ferromagnetic material to a changing magnetic field.

Many rare-earth minerals have been investigated in attempts to build a viable magnetic fridge.

The Canadian-Bulgarian researchers originally set out to measure the standard magnetocaloric effect in the multiferroic compound HoMn2O5, because this material possesses an insulating behaviour that prevents energy losses associated with electric currents passing through it when altering its magnetic field.

To their surprise, they discovered that a giant magnetocaloric effect can be obtained by simply rotating a crystal of HoMn2O5 within a constant magnetic field. Previous studies with other materials have always required the ferromagnetic material to be moved in and out of the magnetic field zone to produce the effect.

This discovery is seen as an important step toward the development of magnetic cooling technology. The concept of rotating MCE offering the possibility to build simplified, compact and efficient magnetic cooling systems.

“Using the rotating magnetocaloric effect means that the energy absorbed by the cooling machine can be largely reduced,” explained Mohamed Balli, a researcher in the physics department at the Université de Sherbrooke in Quebec, Canada.

Next, the team plans to explore the possibility of improving the rotating magnetocaloric effect in HoMn2O5 crystals and related materials.

The article, Anisotropy-enhanced giant reversible rotating magnetocaloric effect in HoMn2O5 single crystals, is authored by M Balli, S Jandl, P Fournier, M M Gospodinov and published in Applied Physics Letters.

Latest News

19th April 2024

Carrier efficiency boost for CO2 racks

GERMANY: Carrier Commercial Refrigeration’s new CO2 efficiency booster skid is said to offer an energy efficient upgrade for refrigeration racks.
19th April 2024

Midea to acquire Arbonia HVAC businesses

SWITZERLAND: Midea has agreed the €760m purchase of Swiss group Arbonia’s Climate Division, which includes HVAC businesses Sabiana, Termovent and Tecna.
19th April 2024

Castel acquires majority stake in Dieci Electric

ITALY: Refrigeration and air conditioning components supplier Castel has announced the acquisition of a majority stake in Dieci Electric, a manufacturer of industrial RAC system electrical panels.
18th April 2024

Fan maker to expand US tooling centre

USA: German fan manufacturer EBM‑Papst is to add a 1,350m2 extension to its US manufacturing and engineering facility in Farmington, Connecticut.
18th April 2024

Artus adds larger hybrid fan coil

UK: Artus Air has added a larger model to its range of hybrid fan coil units.
18th April 2024

Thai ammonia leak sends 155 to hospital

THAILAND: An ammonia leak at an ice factory in Thailand’s Chonburi Province hospitalised more than 150 people of which nine are said to be in a serious condition.