World News

Industry news and insights from Europe and around the World

UK News

Latest news and developments in the United Kingdom

Products

Keep up-to-date with the latest new products and technology

Features

General articles, applications and industry analysis

Could ionocaloric cooling replace vapour compression?

USA: Researchers at the Department of Energy’s Lawrence Berkeley National Laboratory have been experimenting with creating a refrigeration effect by using ions to drive solid-to-liquid phase changes.

The technique, which they have named ionocaloric cooling, takes advantage of how energy, or heat, is stored or released when a material changes phase – such as changing from solid ice to liquid water. The ionocaloric cycle causes this phase and temperature change through the flow of ions (electrically charged atoms or molecules) which come from a salt.

Other kinds of “caloric” cooling have been researched in the past, and continue to be investigated. These include magnetism, pressure, stretching, and electric fields to manipulate solid materials so that they absorb or release heat. Ionocaloric cooling differs by using ions to drive solid-to-liquid phase changes. Using a liquid has the added benefit of making the material pumpable, making it easier to get heat in or out of the system – something solid-state cooling has struggled with.

The Berkeley Lab scientists calculate that it has the potential to compete with or even exceed the efficiency of gaseous refrigerants found in the majority of systems today.

Running current through the system moves the ions, changing the material’s melting point. When it melts, the material absorbs heat from the surroundings, and when the ions are removed and the material solidifies, it gives heat back.

Experiments

In experimental demonstrations, the team used a salt made with iodine and sodium, alongside ethylene carbonate, a common organic solvent used in lithium-ion batteries. The first experiment showed a temperature change of 25ºC using less than 1V, a greater temperature lift than demonstrated by other caloric technologies.

“Using a material like ethylene carbonate could actually be carbon-negative, because you produce it by using carbon dioxide as an input. This could give us a place to use CO2 from carbon capture,” commented Drew Lilley, a graduate research assistant at Berkeley Lab and PhD candidate at UC Berkeley who led the study.

Researchers hope that the method could one day provide efficient heating and cooling and lead to the phase out traditional vapour compression systems.

“The landscape of refrigerants is an unsolved problem. No one has successfully developed an alternative solution that makes stuff cold, works efficiently, is safe, and doesn’t hurt the environment,” said Drew Lilley. “We think the ionocaloric cycle has the potential to meet all those goals if realised appropriately.”

Promising

Quoted on the Berkeley Lab website, Lilley’s colleague Ravi Prasher, a research affiliate in Berkeley Lab’s Energy Technologies Area and adjunct professor in mechanical engineering at UC Berkeley, said: “There are three things we’re trying to balance: the GWP of the refrigerant, energy efficiency, and the cost of the equipment itself. From the first try, our data looks very promising on all three of these aspects.”

While caloric methods are often discussed in terms of their cooling power, the cycles can also be harnessed for applications such as water heating or industrial heating. The ionocaloric team is continuing work on prototypes to determine how the technique might scale to support large amounts of cooling, improve the amount of temperature change the system can support, and improve the efficiency. 

“We have this brand-new thermodynamic cycle and framework that brings together elements from different fields, and we’ve shown that it can work,” Prasher said. “Now, it’s time for experimentation to test different combinations of materials and techniques to meet the engineering challenges.”

Lilley and Prasher have received a provisional patent for the ionocaloric refrigeration cycle, and the technology is now available for licensing by contacting [email protected].

Latest News

28th March 2024

Hudson warns of unsafe US recovery cylinders

USA: The US refrigerant supplier and reclaimer Hudson Technologies has warned of illegal and unsafe recovery cylinders entering the US market.
28th March 2024

Topical talks at Bath breakfast meeting

UK: The next South West South Wales Refrigeration Society breakfast briefing will feature talks from three experienced and knowledgable speakers on varied refrigeration and air conditioning topics.
28th March 2024

CO2 compressor for multiple applications

ITALY: Frascold’s new TK HD series transcritical CO2 compressors are designed for a wide range of refrigeration and air conditioning applications, as well as high-temperature heat pumps up to 100°C.
28th March 2024

Copeland releases 50hp scroll in Asia

CHINA: US compressor manufacturer Copeland is to launch a 50hp scroll for heat pump OEMs in Asia.
27th March 2024

Daikin redesigns Perfera R32 air conditioner

BELGIUM: Daikin Europe has announced a next generation All Seasons Perfera R32 air conditioner with redesigned indoor and outdoor units, making them easy to install and use.
27th March 2024

Press fittings go large

UK: Conex Bänninger has expanded its >B< MaxiPro range of press fittings with the addition of a 1⅝in fitting.